Найменування методичних матеріалів

Відкрити, зберегти на свій комп'ютер або роздрукувати повний текст (формат PDF) 

 

Тема: Функціональні методи розв’язування рівнянь.

Мета:

- повторити функціональні методи розв’язування рівнянь;

- розвивати вміння і навички розв’язування рівнянь різними методами;

- розвивати вміння систематизувати і узагальнювати, робити умовиводи;

- виховувати прагнення до реалізації своїх навчальних можливостей.

Тип уроку: урок-семінар.

 

Хід уроку.

І. Організаційний момент.

ІІ. Мотивація навчальної діяльності.

Аналіз таблиці кількісного розподілу змістовних ліній програми ЗНО з математики (Рівняння та нерівності – 21% тесту).

ІІІ. Перевірка домашнього завдання.

1.     Фронтальне опитування:

-         які методи розв’язування рівнянь ми розглянули на минулому уроці? (метод розкладання на множники; метод заміни змінної);

-         які із рівнянь заданих додому ви розв’язували методом заміни змінної (Варіант 82, № 3.1; Варіант 51, № 3.2 ).

2.     Назвати відповіді отримані при розв’язуванні домашнього завдання. Звіритись із ходом розв’язання (розв’язки рівнянь спроектовані на екран).


Варіант 82   № 3.1

 

3. Перевірочний тест. Вибрати правильний варіант відповіді ( питання і варіанти відповіді тесту спроектовані на екран).

1)    Рівність, що містить невідоме називається:

а) тотожністю;

б) рівнянням;

в) нерівністю.

2) Розв’язати рівняння означає, що необхідно:

а) знайти всі його корені;

б) довести , що рівняння коренів не має;

в) знайти всі його корені, чи довести що рівняння коренів не має.

3) Множину всіх значень невідомого, при яких вирази, що входять до рівняння мають зміст називають:

а) областю допустимих значень;

б) областю значень;

в) коренями рівняння.

4) Два рівняння називаються рівносильними, якщо:

а) вони не мають коренів;

б) якщо вони мають однакові корені;

в) якщо кожен розв’язок першого рівняння є розв’язком другого рівняння.

5) Рівняння виду , де а і в- деякі числа, називається:

а) лінійним;

б) квадратним;

в) показниковим.

6) Корені зведеного квадратного рівняння можна знайти за допомогою теореми:

а) Піфагора;

б) Фалеса;

в) Вієта.

7) При піднесенні обох частин рівняння до довільного парного степеня можлива:

а) поява сторонніх коренів;

б) втрата коренів.