Тема уроку. Числові нерівності. Основні властивості числових нерівностей.

Відкрити, зберегти на свій комп'ютер або роздрукувати повний текст (формат PDF)

 

У Концепції загальної середньої освіти зазначено: «Освіта XXI століття - це освіта для людини… XXI століття - це час переходу до високотехнологічного інформаційного суспільства, у якому якість людського потенціалу, рівень освіченості і культури всього населення набувають вирішального значення для економічного і соціального поступу країни.».

В галузі шкільної освіти взято курс на гуманізацію і демократизацію навчання, а головною його метою стає розвиток особистості як найвищої цінності суспільства.

Одним із напрямків формування особистості школяра як творчої, розвитку позитивних якостей кожного учня, його потенційних можливостей є впровадження інформаційних комп’ютерних технологій (далі ІКТ) у навчальний процес.

Ще Блез Паскаль зазначав, що предмет математики є таким серйозним, що зробити його цікавим не тільки можна, а й треба. Тому на уроках математики комп’ютер є доцільним засобом навчання і ефективним помічником учителеві у вирішенні проблем викладання математики.

Застосування програмних засобів навчання математики, з урахуванням інтересів і здібностей учнів сприятиме становленню всебічно розвиненої особистості.
 Нова організація навчальної діяльності учнів, яка ґрунтується на запровадженні у навчальний процес ІКТ, змінює джерела навчальних відомостей, і, в першу чергу, навчальну книгу. Крім традиційних друкованих підручників, у навчанні математики ширше застосовуються  підручники нового типу: програмовані, мультимедійні, електронні.
            Пропоную добірку уроків алгебри в 9 класі по темі «Нерівності» з використанням комп’ютерних технологій, під час проведення яких використовується програмний засіб “Бібліотека електронних наочностей „Алгебра 7-9 клас” для загальноосвітніх навчальних закладів” (створений для комп’ютерної підтримки уроків алгебри у 7 – 9 класах загальноосвітньої школи по заказу Міністерства освіти і науки України Херсонським державним університетом), програма PowerPoint та  редактор тестів Test W2.

Уроки розраховані на проведення з неоднорідним по успішності класом (25-30учнів) у комп’ютерному класі (по 2 учні за комп’ютером)

            При проведенні уроків мається на увазі, що учні знають вже прийоми роботи з вказаними комп’ютерними програмами. Для слабо підготовлених дітей необхідно більше приділити уваги технології роботи з комп’ютером.

А.І. Каща,

вчитель-методист вищої категорії

Лебединська ЗОШ І-ІІІ ст.№5

Сумська область
 

Тема уроку. Числові нерівності. Основні властивості числових нерівностей.

Дидактична мета уроку. Ввести поняття числової нерівності. Сформулювати основні властивості числових нерівностей.

Тип уроку. Урок засвоєння нових знань

Форма проведення: лекція з використанням комп’ютерів

Склад уроку у бібліотеці уроків:

-          опорний конспект «Означення поняття «більше», «менше». Приклади»

-          опорний конспект «Знаки нерівностей. Порівняння двох чисел. Приклади»

-          опорний конспект «Означення числової нерівності. Приклади числових нерівностей»

 

Хід проведення уроку-лекції

І. Усвідомлення матеріалу лекції.

1. Обґрунтування необхідності введення різниці виразів

Порівняння чисел широко використовується на практиці. Наприклад, фермер порівнює затрати на виробництво 1т зерна та ціну 1т реалізованого зерна; лікар порівнює температуру хворого з нормальною; токар порівнює розміри виготовленої деталі з еталоном; учень порівнює свій зріст зі зростом товариша тощо. У всіх випадках порівнюються деякі числа.

Порівняємо, наприклад, числа . Порівняти їх можна, якщо нанести на координатну пряму і з’ясувати, яке число розташоване правіше. Проте цей спосіб не зовсім зручний, тому знайдемо різницю:

Отже, , тобто число  одержуємо додаванням до числа    числа . Це означає, що число більше від числа . Таким чином, , оскільки їхня різниця додатна, тобто

2.Введення означень: a > b, a <b, a = b

Робота за комп’ютерами.

Використовуючи програмний засіб «Алгебра 7 – 9 клас», з’ясуємо, що означає вислів

 « a > b, a <b»